
SIAM J. SCI. COMPUT. c\bigcirc 2018 Society for Industrial and Applied Mathematics
Vol. 40, No. 5, pp. A3344--A3370

ROBUST LINEAR STABILITY ANALYSIS AND A NEW METHOD
FOR COMPUTING THE ACTION OF THE MATRIX EXPONENTIAL\ast

MINGHAO W. ROSTAMI\dagger AND FEI XUE\ddagger

Abstract. Linear stability analysis of a large-scale dynamical system requires computing the
rightmost eigenvalue of a large sparse matrix A. To enhance the convergence to this eigenvalue,
an iterative eigensolver is usually applied to a transformation of A instead, which plays a similar
role as a preconditioner for linear systems. Commonly used transformations such as shift-invert are
unreliable and may cause convergence to a wrong eigenvalue. We propose using the exponential
transformation since the rightmost eigenvalues of A correspond to the dominant ones of ehA (h > 0),
which are easily captured by iterative eigensolvers. Numerical experiments on several challenging
eigenvalue problems arising from linear stability analysis and pseudospectral analysis demonstrate
the robustness of the exponential transformation at ``preconditioning"" the rightmost eigenvalue. The
key to the efficiency of this preconditioner is a fast algorithm for approximating the action of ehA

on a vector. We develop a new algorithm based on a rational approximation of ex with only one
(repeated) pole. Compared to polynomial approximations, it converges significantly faster when
the spectrum of A has a wide horizontal span, which is common for matrices arising from PDEs;
compared to the Krylov-type methods, our method requires considerably less memory.

Key words. linear stability analysis, rightmost eigenvalue, Arnoldi's method, matrix exponen-
tial, Leja points, rational approximation, pseudospectral analysis

AMS subject classifications. 65D05, 65F15, 65F50

DOI. 10.1137/17M1132537

1. Introduction. This paper concerns how to reliably determine the stability
of the steady state of a large-scale linear or linearized dynamical system

(1) \.u = Au,

typically arising from the semidiscretization of time-dependent partial differential
equations (PDEs) in two-dimensional (2-D) or three-dimensional (3-D) domains. The
vector u \in Rn holds state variables such as velocity, pressure, and temperature, and
the Jacobian matrix A \in Rn\times n is large, sparse, and generally nonsymmetric. It is
well-known that the stability of the steady state of (1) is dictated by the rightmost
eigenvalue (i.e., the eigenvalue with algebraically largest real part) of A [17, sect. 1.5]:
If this eigenvalue has strictly negative real part, then the steady state is stable, mean-
ing that small disturbances introduced to it will decay in time; otherwise, the steady
state is unstable and disturbances will grow with time. Typically, the majority of the
eigenvalues of A have negative real parts.

Finding the rightmost eigenvalues of large matrices can be quite difficult. Direct
methods such as the QR and QZ algorithms [40, Chap. 2] produce the complete set
of eigenvalues but are not feasible for large matrices. Iterative eigensolvers, such as

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section May 31,
2017; accepted for publication (in revised form) July 17, 2018; published electronically October 9,
2018.

http://www.siam.org/journals/sisc/40-5/M113253.html
Funding: The first author's work was supported in part by the Simons Foundation under award

527247 and the National Science Foundation under grant DMS-1818833. The second author's work
was supported in part by the National Science Foundation under grants DMS-1719461 and DMS-
1819097.

\dagger Department of Mathematics, Syracuse University, Syracuse, NY 13244 (mwrostam@syr.edu).
\ddagger Department of Mathematical Sciences, Clemson University, Clemson, SC 29634 (fxue@clemson.

edu).
A3344

http://www.siam.org/journals/sisc/40-5/M113253.html
mailto:mwrostam@syr.edu
mailto:fxue@clemson.edu
mailto:fxue@clemson.edu

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3345

subspace iteration [34, Chap. 5] and the Arnoldi's method and variants (see [32, 39]
and [34, Chaps. 6 and 7]) are both efficient and reliable at computing a few large
(in modulus), exterior, and/or well-separated eigenvalues of a large sparse matrix.
However, the rightmost eigenvalue of A is often neither large nor well-separated.

To achieve reliable and rapid convergence, we often apply iterative eigensolvers to
a transformation \scrT (A) of A to find the rightmost eigenvalue. An ideal transformation
\scrT should satisfy the following three criteria [24]: (i) the rightmost eigenvalue of A is
mapped to a large and/or well-separated eigenvalue of \scrT (A), (ii) the matrix \scrT (A),
which may be too costly to form, can still be applied to vectors efficiently, and (iii)
it is easy to recover the eigenpairs of A from those of \scrT (A). This transformation can
therefore be viewed as a preconditioner for the rightmost eigenvalue.

Several preconditioners have been proposed in the literature to achieve this goal,
namely, the shift-invert transformation [14] \scrS \sigma : A \rightarrow (A - \sigma I) - 1, the Cayley trans-
formation [16] \scrC \sigma 1,\sigma 2

: A \rightarrow (A - \sigma 1I)
 - 1(A - \sigma 2I) = I + (\sigma 1 - \sigma 2)\scrS \sigma 1

(A), and the
Kronecker sum transformation [13, 26] \scrK : A \rightarrow 1

2 (A \otimes I + I \otimes A). The shift-invert
transformation is reliable for finding the eigenvalues of A closest to \sigma ; however, it
is not suitable in our problem setting since an estimate for the rightmost eigenvalue
of A is usually not available a priori. When \sigma 1, \sigma 2 \in R and \sigma 1 > \sigma 2, the Cayley
transformation maps the eigenvalues of A on the right of the vertical line x = \sigma 1+\sigma 2

2
to those of \scrC \sigma 1,\sigma 2

(A) outside the unit circle centered at the origin; its effectiveness at
finding the rightmost eigenvalue of A relies heavily on the choice of \sigma 1 and \sigma 2, which
are again difficult to configure beforehand. If A is real and its rightmost eigenvalue
has negative real part, the most reliable existing preconditioner is the Kronecker sum
transformation; it maps the rightmost eigenvalue of A to the smallest eigenvalue of
\scrK (A), which can be computed by the Lyapunov inverse iteration [12, 25]. However,
this approach could fail if the rightmost eigenvalue has positive real part or if A is
not real; moreover, it requires solving large-scale Lyapunov equations, and iterative
methods such as [9, 10, 37, 29] are often storage-consuming.

In this paper, we propose using the exponential transformation

(2) \scrE : A\rightarrow ehA = I + hA+
(hA)2

2
+ \cdot \cdot \cdot (hA)

k

k!
+ \cdot \cdot \cdot

where h > 0 as a preconditioner for finding the rightmost eigenvalue of A. It is
robust because for any square, complex, and diagonalizable matrix A and any h > 0,
the rightmost eigenvalue of A is guaranteed to be mapped to the largest eigenvalue
of ehA. Applying an iterative eigensolver to ehA entails a sequence of matrix-vector
multiplications of the form ehAv.

Many algorithms, such as short-term recurrence polynomial approximations [1,
3, 6, 7, 8, 35] and polynomial/rational Krylov-type methods [20, 22, 27, 28, 33, 36],
have been developed to approximate ehAv without constructing ehA (typically dense
even if A is sparse). A comparison of some polynomial methods has been presented in
[6], which shows the advantages of the polynomial Leja method [7, 8]. In this paper,
we develop a new method for computing ehAv based on the Newton interpolation
of ef(\xi) at Leja points [30], where f is a rational function. The change of variable
x = f(\xi) is suggested in [42, Chap. 25] for approximating ex over (- \infty , 0]. We refer
to this new method as the rational Leja method. It outperforms the polynomial Leja
method for most of the matrices considered in this study. When compared with the
Restricted Denominator (RD)-rational method [27], both Leja methods usually take
a longer time to converge; nevertheless, they require considerably less memory.

When A originates from real-world applications, its entries are often contaminated

A3346 MINGHAO W. ROSTAMI AND FEI XUE

by small errors; in addition, eigenvalues do not determine the behavior of the transient
solution to (1), which can be very different from the behavior of the steady state [43,
sect. 14]. For instance, there are well-known examples in fluid mechanics that are
predicted to be stable by eigenvalue analysis yet observed to be unstable in a lab
environment [43, sect. 20]. A more robust measurement of stability is the rightmost
point of the \varepsilon -pseudospectrum [43, sect. 2] of A:

(3) \Lambda \varepsilon (A) =
\bigl\{
z \in C | z is an eigenvalue of A+\Delta , where \Delta \in Cn\times n and \| \Delta \| \leq \varepsilon

\bigr\}
,

where \varepsilon > 0 and \| \cdot \| can be any matrix norm. In some applications, it is necessary to
restrict the perturbation matrices \Delta in (3) to be real, resulting in the real-structured
\varepsilon -pseudospectrum [43, sect. 50] of A, denoted by \Lambda R

\varepsilon (A). Several fast algorithms
[18, 19, 31] have been developed to find the rightmost point of \Lambda \varepsilon (A) or \Lambda R

\varepsilon (A) for
large and sparse A, and they all require computing the rightmost eigenvalues for a
sequence of low-rank updates of A. Our preconditioner \scrE works particularly well for
these eigenvalue problems.

The rest of this paper is organized as follows. In section 2, we present the main
observation that relates the eigenpairs of A to those of ehA and provide a motivational
example to illustrate the effectiveness of the exponential transformation. In section
3, we review the polynomial Leja method and introduce the single-pole rational Leja
method. In section 4, numerical results of the new preconditioner are presented and
compared with those of some existing preconditioners. The performance of several
methods for computing the action of the matrix exponential is also compared. Sec-
tion 5 explores the applications of the exponential transformation in pseudospectral
analysis. Concluding remarks are made in section 6.

Throughout the paper, we use Re(\cdot) and Im(\cdot) to denote the real and imaginary
parts of a complex number or vector, respectively; and \| \cdot \| denotes the Euclidean
norm from now on.

2. Main theorems and a motivational example. In this section, we show
that the exponential transformation is a reliable preconditioner for computing a few
rightmost eigenvalues. Specifically, the rightmost eigenvalues of A are mapped to the
dominant eigenvalues of ehA (h > 0), which are also well-separated if h is reasonably
large. It is easy to recover the rightmost eigenvalues of A via the Rayleigh--Ritz
projection once the dominant eigenvectors of ehA are found.

We investigate the one-to-one correspondence between the eigenpairs of A and
those of ehA in Theorem 2.1 and Corollary 2.2. The proof of the former is straight-
forward and omitted.

Theorem 2.1. Assume that A \in Cn\times n is diagonalizable. Then (eh\mu ,x) is an
eigenpair of ehA if and only if (\mu ,x) is an eigenpair of A, where \mu \in C and x \in Cn.

Corollary 2.2. Assume that A \in Cn\times n is diagonalizable and h > 0. Let
\{ (\mu j ,xj)\} nj=1 be the eigenpairs of A ordered such that the real parts of \{ \mu j\} nj=1 are
decreasing, i.e.,

(4) Re(\mu 1) \geq Re(\mu 2) \geq \cdot \cdot \cdot \geq Re(\mu n).

Then the following statements hold.
1. Let \lambda j = eh\mu j . Then \{ (\lambda j ,xj)\} nj=1 are the eigenpairs of ehA and the moduli

of \{ \lambda j\} nj=1 are decreasing, i.e., | \lambda 1| \geq | \lambda 2| \geq \cdot \cdot \cdot \geq | \lambda n| .
2. If Re(\mu k) > Re(\mu k+1), then the ratio | \lambda k+1|

| \lambda k| = eh(Re(\mu k+1) - Re(\mu k)) is a decreas-

ing function of h; in addition, limh\rightarrow +\infty
| \lambda k+1|
| \lambda k| = 0 and limh\rightarrow 0

| \lambda k+1|
| \lambda k| = 1.

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3347

3. On the complex plane, \lambda j lies

\left\{

inside the unit circle centered at (0, 0)

if Re(\mu j) < 0,

on the unit circle centered at (0, 0)

if Re(\mu j) = 0,

outside the unit circle centered at (0, 0)

if Re(\mu j) > 0.

Proof. By Theorem 2.1,
\bigl\{
(eh\mu j ,xj)

\bigr\}
are the eigenpairs of ehA. Statements 1 and

2 follow from

(5) | \lambda j | =
\bigm| \bigm| eh\mu j

\bigm| \bigm| = eRe(h\mu j) = ehRe(\mu j),

h > 0, and (4). Statement 3 is obvious from (5).

By statement 1 of Corollary 2.2, the k rightmost eigenvalues \{ \mu j\} kj=1 of A are

mapped to the k dominant eigenvalues \{ \lambda j\} kj=1of e
hA for all 1 \leq k \leq n. In addition,

since \mu j and \lambda j share eigenvectors, once we have obtained the eigenvectors \{ xj\} kj=1 of

ehA, recovering the eigenvalues \{ \mu j\} kj=1 of A is easy by the Rayleigh--Ritz projection.

It is well-known that the closer the ratio | \lambda k+1|
| \lambda k| in statement 2 is to 1, the slower

subspace iteration or Arnoldi's method and its variants converge to the dominant k
eigenvalues of ehA. Increasing h accelerates the convergence rate of the eigensolver,
but it also makes ehAv more difficult to compute (see later discussions). Statement 3
describes how the position of an eigenvalue \lambda j of e

hA relative to the unit circle centered
at (0, 0) is determined by the sign of the real part of the corresponding eigenvalue \mu j

of A (see Figure 1). In fact, it is easy to see that each vertical line in the complex
plane is mapped to a circle centered at the origin by the exponential transformation.

before the transformation after the transformation

Fig. 1. The effect of the exponential transformation ehA with h > 0 on the complex plane.

To illustrate the advantages of the exponential transformation, we consider a
4000\times 4000 nonsymmetric real matrix A that arises from aeroelasticity and is referred
to as Tolosa in this paper. In Figure 2, the eigenvalues of both A and ehA with
h = 1 are displayed. The right plot indicates that except for a number of rightmost
eigenvalues, most of the eigenvalues of A are mapped to a tight cluster around the
origin. The rightmost eigenvalues \mu 1,2 = - 0.156 \pm 156i of A (crosses in the left
plot) are mapped to the dominant eigenvalues \lambda 1,2 = e\mu 1,2 = 0.40347 \pm 0.75445i of
ehA (crosses in the right plot). The second rightmost pair of eigenvalues of A are
\mu 3,4 = - 0.22394 \pm 162i, which get mapped to \lambda 3,4 = 0.16493 \pm 0.78216i. The ratio

A3348 MINGHAO W. ROSTAMI AND FEI XUE

-1500 -1000 -500 0
-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. The complete sets of eigenvalues of A (left panel) and eA (right panel) in the Tolosa
case. The circle in the right plot is the unit circle centered at (0, 0). The crosses represent the
rightmost eigenvalues of A or the largest eigenvalues of eA.

| \lambda 3,4|
| \lambda 1,2| = eh(Re(\mu 3,4) - Re(\mu 1,2)) = 0.93432 is not very close to 1. Therefore, we expect an

iterative eigensolver for ehA to converge to \lambda 1,2 in a reasonable number of iterations,
and this is indeed the case in our experiments in section 4.

3. The polynomial and single-pole rational Leja method. Applying an
iterative eigenvalue solver to compute dominant eigenvalues of ehA entails multiple
matrix-vector products with ehA. We review the polynomial Leja method and describe
the new rational Leja method for computing the action of the matrix exponential, both
of which are based on the Newton interpolation at Leja points. A major advantage of
both Leja methods is that they are very storage-efficient. In the following exposition,
we assume that the majority of the eigenvalues of A have negative real parts. This is
typical for matrices of interest in linear stability analysis.

3.1. Review of the polynomial Leja method. This method is based on
Newton's interpolation formula of ex with divided differences [21, Chap. 2]:

(6) ex \approx p\ell (x) =
\sum \ell

j=0 djrj(x), x \in K,

where \{ dj\} \ell j=0 are the divided differences of ex on distinct interpolation points \{ xj\} \ell j=0

\subset K, i.e.,

d0 = e[x0] = ex0 , d1 =
e[x1] - e[x0]

x1 - x0
, dj =

e[x1, . . . , xj] - e[x0, . . . , xj - 1]

xj - x0
for j \geq 2,

and rj(x) is the following jth degree monomial:

r0(x) = 1, rj(x) = (x - x0) \cdot \cdot \cdot (x - xj - 1) =
\prod j - 1

i=0 (x - xi) for j \geq 1.

An attractive feature of the Newton form (6) is that given a new interpolation point
x\ell +1, it is easy to obtain p\ell +1(x) from p\ell (x) and other known quantities as follows:

r\ell +1(x) = (x - x\ell)r\ell (x), p\ell +1(x) = p\ell (x) + d\ell +1r\ell +1(x) for \ell \geq 0.

A sequence of Leja points in a compact set K \subset C is defined recursively as

(7) x0 = argmax
x\in K
| x| , xj = argmax

x\in K
| x - x0| \cdot \cdot \cdot | x - xj - 1| for j \geq 1,

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3349

which are in general not unique. Using Leja points as the interpolation points has
the advantages of a near-optimal, geometric rate of convergence and controlling the
``condition number"" of (6) as \ell grows (see [30] and the references therein).

By replacing x with hA in (6) and right-multiplying both sides of it by v, we
could get a polynomial approximation of ehAv. When h > 0 is large, a polynomial of
high degree is necessary in (6), which limits the accuracy of this approximation (see
[6] for more details). Instead, ehAv is computed in a number of substeps in [6, 7, 8],
i.e.,

(8) ehAv = e\tau A \cdot \cdot \cdot e\tau A\underbrace{} \underbrace{}
T applications

v,

where T \geq 1 is the number of substeps and \tau = h/T is the size of each substep. The
choice of Leja points is crucial in the computation of e\tau Av and we briefly review the
approach of [6, 8] in Appendix A. The polynomial Leja method with substepping is
outlined in Algorithm 1.

Algorithm 1 The polynomial Leja method with substepping for computing ehAv.

Input: h, A, v, \alpha , \nu , \beta , \tau , L, reltol, Leja points \{ \xi j\} Lj=0 on [- 2, 2] and \{ \zeta j\} Lj=0 on
i[- 2, 2]

Output: An approximation w of ehAv
1: Determine c, d, and K from \alpha , \nu , and \beta (see Appendix A).
2: w\leftarrow v, T \leftarrow \lceil h/\tau \rceil , \tau \leftarrow h/T
3: if K is horizonal then
4: Compute the divided differences

\bigl\{ \widehat dj\bigr\} L

j=0
of e\tau (c+

d
2 \xi) on \{ \xi j\} Lj=0;

5: \{ \omega j\} L - 1
j=0 \leftarrow

\bigl\{
2c
d + \xi j

\bigr\} L - 1

j=0

6: else
7: Compute the divided differences

\bigl\{ \widehat dj\bigr\} L

j=0
of e\tau (c+

d
2 \zeta) on \{ \zeta j\} Lj=0;

8: \{ \omega j\} L - 1
j=0 \leftarrow

\bigl\{
2c
d + \zeta j

\bigr\} L - 1

j=0

9: endif
10: for t = 1, . . . , T do
11: r\leftarrow w, w\leftarrow \widehat d0r
12: for \ell = 1, . . . , L do
13: r\leftarrow

\bigl(
2
dA - \omega \ell - 1I

\bigr)
r

14: \Delta w\leftarrow \widehat d\ell r, w\leftarrow w +\Delta w
15: if \| \Delta w\| /\| w\| < reltol then
16: break from the inner for loop

17: endif
18: endfor
19: endfor

3.2. The single-pole rational Leja method. We observe from experiments
that the polynomial Leja method (Algorithm 1) suffers from slow convergence when
the spectrum of A has a wide horizontal span along (- \infty , 0]. This spectral property
is shared by many matrices arising from spatial discretization of PDEs. To tackle this
difficulty, we propose a rational Leja method.

First consider the scalar case of the problem: approximating ex over (- \infty , 0]. It is
well-known [42, Chap. 25] that the scalar case is difficult for polynomial interpolations

A3350 MINGHAO W. ROSTAMI AND FEI XUE

since they diverge as x \rightarrow - \infty . A rational approximant is naturally much more
suitable. In [42, Chap. 25], the following method is used: For a fixed a > 0, let

\xi \in (- 2, 2] satisfy x = a \xi - 2
\xi +2 \in (- \infty , 0] and define f(\xi) = ea

\xi - 2
\xi +2 ;1 then compute a

polynomial approximation q\ell (\xi) of f(\xi), which can in turn be written as a rational
approximation of ex in the variable x since \xi = 2(a+ x)/(a - x).

We propose using Newton interpolation polynomial of f(\xi) on Leja points, that
is,

(9) ex = f(\xi) \approx q\ell (\xi) =
\sum \ell

j=0 \delta j\widehat rj(\xi), \xi \in (- 2, 2],

where \{ \delta j\} \ell j=0 are the divided differences of f(\xi) on Leja points \{ \xi j\} \ell j=0 \subset (- 2, 2],
and the monomials \widehat rj(\xi) are defined as

\widehat r0(\xi) = 1, \widehat rj(\xi) = (\xi - \xi 0) \cdot \cdot \cdot (\xi - \xi j - 1) =
\prod j - 1

i=0 (\xi - \xi i) for j \geq 1.

Since \xi = 2a+x
a - x , (9) gives a rational approximation

(10) ex \approx \Upsilon \ell ,\ell (x) =
\sum \ell

j=0 \delta j\widehat rj\bigl(2(a+ x)/(a - x)
\bigr)
=

\sum \ell
j=0 \delta j\rho j,j(x), x \in (- \infty , 0],

where

(11) \rho 0,0(x) = 1, \rho j,j(x) =
\prod j - 1

i=0

\bigl(
2(a+ x)/(a - x) - \xi i

\bigr)
for j \geq 1.

Note that \rho j,j(x) is a rational function of type (j, j), which can be written as the
quotient of two polynomials of degree j (see [42, Chap. 23]). It is not difficult to see
that \Upsilon \ell ,\ell (x) is of type (\ell , \ell). In addition, updating \Upsilon \ell ,\ell (x) to \Upsilon \ell +1,\ell +1(x) is easy:

\rho \ell +1,\ell +1(x) =
\bigl(
2(a+ x)/(a - x) - \xi \ell

\bigr)
\rho \ell ,\ell (x),(12)

\Upsilon \ell +1,\ell +1(x) = \Upsilon \ell ,\ell (x) + \delta \ell +1\rho \ell +1,\ell +1(x) for \ell \geq 0.

We now return to the problem of approximating ehAv. By replacing x with hA in
(10)--(12) and right-multiplying both sides of them by v, we obtain the approximation

(13) ehAv \approx \Upsilon \ell ,\ell (hA)v =
\sum \ell

j=0 \delta j\rho j,j(hA)v

as well as means of updating it, i.e.,

\rho \ell +1,\ell +1(hA)v =
\bigl(
2(aI - hA) - 1(aI + hA) - \xi \ell I

\bigr)
\rho \ell ,\ell (hA)v for \ell \geq 0,(14)

\Upsilon \ell +1,\ell +1(hA)v = \Upsilon \ell ,\ell (hA)v + \delta \ell +1\rho \ell +1,\ell +1(hA)v.

The choice of the scaling factor a will be discussed in section 3.3.2.
The single-pole rational Leja method with substepping (8) is summarized in Al-

gorithm 2. It can be viewed both as a generalization of the method in [42, Chap. 25]
to the matrix case and as a generalization of the polynomial Leja method [6, 7, 8]
to ef(B)v where f is a rational function. A particularly appealing property of the
rational approximation \Upsilon \ell ,\ell is that it only has one pole (with multiplicity \ell). Con-
sequently, although every update (14) requires solving a linear system, its coefficient
matrix aI - hA stays the same. We may prefactorize it or construct a preconditioner

1To be more precise, \xi \in (- 1, 1] such that x = a \xi - 1
\xi +1

\in (- \infty , 0] and f(\xi) = e
a \xi - 1

\xi +1 are used

instead in [42, Chap. 25]. Here, we rescale \xi so that its domain has unit capacity, as in Appendix A.

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3351

Algorithm 2 The single-pole rational Leja method with substepping for computing
ehAv.

Input: h, A, v, \tau , L, a, reltol, Leja points \{ \xi j\} Lj=0 on (- 2, 2]
Output: An approximation w of ehAv

1: Compute the L divided differences \{ \delta j\} L - 1
j=0 of ea

\xi - 2
\xi +2 on \{ \xi j\} L - 1

j=0 .
2: w\leftarrow v, T \leftarrow \lceil h/\tau \rceil , \tau \leftarrow h/T
3: for t = 1, . . . , T do
4: r\leftarrow w, w\leftarrow \delta 0r
5: for \ell = 1, . . . , L do
6: Solve (aI - \tau A)y = (aI + \tau A)r for y.
7: r\leftarrow 2y - \xi \ell - 1r
8: \Delta w\leftarrow \delta \ell r, w\leftarrow w +\Delta w
9: if \| \Delta w\| /\| w\| < reltol then

10: break from the inner for loop

11: endif
12: endfor
13: endfor

for it ``once and for all,"" which is usually much more efficient than a sequence of linear
solves with different coefficient matrices. This is a major advantage over the rational
approximations that have multiple distinct poles for large matrices. Moreover, unlike
in the polynomial Leja method (see Appendix A), there is no need to find a rectangle
[\alpha , \nu]\times [- \beta , \beta] containing the eigenvalues of A.

We end this section with a minor technical comment. If the set K is not compact,
such as (- 2, 2], the optimization problem (7) may not have a solution. The sequence
of Leja points used in Algorithm 2 is obtained as follows: We first find a sequence of
Leja points in [- 2, 2]; since - 2 is guaranteed to be among them, we replace it with
 - 2 + \vargamma where \vargamma > 0 is small.

3.3. Parameter estimation. In this section, we discuss how to determine the
parameter values for of the polynomial Leja method (Algorithm 1) and the single-pole
rational Leja method (Algorithm 2). These parameters are listed in Table 1.

Table 1
The parameters of Algorithms 1 and 2.

Parameter Algorithm Description
\alpha , \nu , \beta 1 spectral bounds of A (see Appendix A)

\tau

1 and 2

substep size (8)
L maximum degree of Newton polynomials (9) and (20)

reltol
tolerance used in the stopping criterion
(see line 15 of Algorithm 1 and line 9 of Algorithm 2)

a 2 scaling factor used in the change of variable x = a \xi - 2
\xi +2

3.3.1. Estimate the spectral bounds for polynomial Leja. Algorithm 1 re-
quires finding a rectangle [\alpha , \nu]\times [- \beta , \beta] enclosing the spectrum of A; see Appendix A.
Estimating the bound \nu requires approximating the rightmost eigenvalue of A, which
is challenging and, in fact, the main goal of this paper. Based on the assumption at
the beginning of section 3, it is reasonable to simply take \nu to be 0. We focus on
estimating the bounds \alpha and \beta .

A3352 MINGHAO W. ROSTAMI AND FEI XUE

It is obvious that for all 1 \leq j \leq n,

Re(\mu j) \geq - max\{ | \mu i| \} ni=1 and | Im(\mu j)| \leq max\{ | \mu i| \} ni=1.

Therefore, we can choose

(15) \alpha = - max\{ | \mu i| \} ni=1 and \beta = max\{ | \mu i| \} ni=1.

Alternatively, the bounds \alpha and \beta can also be determined as follows. Let \{ \theta j\} nj=1

and \{ \eta j\} nj=1 be the eigenvalues of 1
2 (A + AT) and 1

2i (A - AT), respectively. By [15,
Theorem 2],

(16) Re(\mu j) \geq min\{ \theta i\} ni=1 and Im(\mu j) \leq max\{ \eta i\} ni=1.

Since

min\{ \theta i\} ni=1 \geq - max\{ | \theta i| \} ni=1 and max\{ \eta i\} ni=1 \leq max\{ | \eta i| \} ni=1,

we can also choose

(17) \alpha = - max\{ | \theta i| \} ni=1 and \beta = max\{ | \eta i| \} ni=1.

In order to find \alpha , \beta defined in (15) or (17), we apply the MATLAB function eigs

with the option lm (largest magnitude) to A or to 1
2 (A+AT) and 1

2i (A - AT). If (1)
arises from a finite element discretization, then A is in the form of M - 1J , where both
M , J are sparse and M - 1J is often too costly to compute. In this case, we apply
eigs to the generalized eigenvalue problem Jx = \mu Mx or to 1

2 (J +JT)x = \mu Mx and
1
2i (J - JT)x = \mu Mx. In [6, 8], \alpha and \beta are chosen to be the lower bound of \{ \theta i\} ni=1

and the upper bound of \{ \eta i\} ni=1 obtained by applying the Gershgorin circle theorem
to 1

2 (A+AT) and 1
2i (A - AT). However, unlike eigs, the Gershgorin theorem is not

directly applicable to generalized eigenvalue problems.
Our strategy is the following: Compute both sets of \alpha , \beta given by (15) and

(17), and choose the algebraically larger \alpha and the smaller \beta . The main cost of this
strategy is finding the largest eigenvalues for A, 1

2 (A+AT), and 1
2i (A - A

T). Although
it is more costly than applying the Gershgorin theorem, it is applicable to A arising
from a finite element discretization; its runtime is negligible compared to the runtime
saved by using tighter spectral bounds in Algorithm 1, especially in cases where many
matrix-vector products ehAv need to be evaluated.

There is no need to estimate the spectral bounds of A for the rational Leja method.
Given a matrix A, we need only find the largest substep size \tau such that e\tau Av can be
approximated by \Upsilon L,L(\tau A)v accurately. This will be discussed in section 3.3.3.

3.3.2. The scaling factor \bfita and the degree \bfitL of Newton polynomials.
Assume that A is diagonalizable and that A = P\Lambda P - 1 is its eigenvalue decomposition.
Then

ehAv = ehP\Lambda P - 1

v = Peh\Lambda P - 1v,(18)

\Upsilon L,L(hA)v = \Upsilon L,L(hP\Lambda P - 1)v = P\Upsilon L,L(h\Lambda)P
 - 1v,

where \Upsilon L,L(x) is defined in (10). Equation (18) implies that

(19) \| ehAv - \Upsilon L,L(hA)v\| \leq \| P\| \cdot \| eh\Lambda - \Upsilon L,L(h\Lambda)\| \cdot \| P - 1\| \cdot \| v\| .

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3353

Ideally, to minimize the upper bound in (19), we should choose a and L such that
\Upsilon L,L(x) approximates ex as accurately as possible at the eigenvalues of hA. Since
the eigenvalues of hA can be anywhere on the complex plane, we aim to perform the
following parameter optimization: Find a and L such that the region on the complex
plane where \Upsilon L,L(x) approximates ex well is as large as possible. To obtain a crude
solution to this problem, we discretize the region [- 100, 5]\times [- 25, 25] on the complex
plane using a Cartesian grid and compute the approximation errors | ex - \Upsilon L,L(x)|
at the grid points; we also restrict the choices of a, L to integers between 1 and 100.
The optimal values of a and L produced by this heuristic are 50 and 45, respectively.2

To show the effectiveness of the choice L = 45, we fix a = 50 and display the contour
plots of log10 | ex - \Upsilon L,L(x)| corresponding to L = 35, 45, and 55 in Figure 3. It can
be seen that the region where | ex - \Upsilon L,L(x)| \leq 10 - 10 is the largest when L = 45.
We emphasize that our approach does not require any spectral information about A.
The choices a = 50 and L = 45 will be used for all matrices.

Note that we cannot apply the same heuristic to find a problem-independent L
for the polynomial Leja method since its choice of Newton polynomial depends on A
(see Appendix A). We simply use L = 100 in the polynomial Leja method.

Fig. 3. The contour plots of log10 | ex - \Upsilon L,L(x)| corresponding to L = 35 (left), 45 (middle),
and 55 (right) (a = 50 is fixed).

3.3.3. The substep size \bfittau . For fixed L and reltol, the larger \tau is, the fewer
substeps T are required by Algorithm 1 or 2. We aim to find the largest \tau such that a
Newton polynomial of degree L (for Algorithm 1) or a rational function of type (L,L)
(for Algorithm 2) is accurate enough for approximating e\tau Av without substepping.

Our approach outlined in Algorithm 3 is essentially a bisection method. The
purpose of lines 1 to 10 is to first identify a ``coarse"" interval [tl, tu] such that Algorithm
1 or 2 without substepping converges for e\tau lAv but not for e\tau uAv, where \tau l = 2tl and
\tau u = 2tu . From lines 11 to 19, we keep bisecting the interval [tl, tu] until a fine
enough new interval [tl, tu] is found such that Algorithm 1 or 2 without substepping
again converges for e\tau lAv but not for e\tau uAv. Note that since no estimate for the
optimal \tau is available in general, to quickly determine its order of magnitude, we
bisect the interval [tl, tu] of the exponent instead of the interval [\tau l, \tau u] of \tau directly.
In the numerical experiments, tl = - 5, tu = 5, \Delta t = 10, and tolt = 0.01 are used in
Algorithm 3. This algorithm can be modified easily to compute \tau for methods other
than Algorithms 1 and 2.

2We note that the following is stated in [42, Chap. 25] with no further explanation: ``A good
choice of the parameter is a = 9, which has a big effect for numerical computation in improving the
conditioning for the approximation problem."" In our experiments, a = 50 leads to obviously faster
approximation to ehAv than a = 9.

A3354 MINGHAO W. ROSTAMI AND FEI XUE

Algorithm 3 Procedure for determining \tau .

Input: A, v, L, a, reltol, Leja points \{ \xi j\} Lj=0 on (- 2, 2], tl, tu (tl < tu), \Delta t > 0, and
tolt

Output: \tau for Algorithm 1 or 2 for which e\tau Av can be approximated without
substepping

1: \tau l \leftarrow 2tl , \tau u \leftarrow 2tu

2: Apply Algorithm 1 or 2 without substepping to compute e\tau lAv and e\tau uA

3: while Algorithm 1 or 2 fails to converge for e\tau lAv do
4: tu \leftarrow tl, \tau u \leftarrow \tau l, tl \leftarrow tl - \Delta t, \tau l \leftarrow 2tl

5: Apply Algorithm 1 or 2 without substepping to compute e\tau lAv

6: endwhile
7: while Algorithm 1 or 2 successfully converges for e\tau uAv do
8: tl \leftarrow tu, \tau l \leftarrow \tau u, tu \leftarrow tu +\Delta t, \tau u \leftarrow 2tu

9: Apply Algorithm 1 or 2 without substepping to compute e\tau uAv

10: endwhile
11: while tu - tl \geq tolt do
12: tm = tu+tl

2 , \tau m = 2tm

13: Apply Algorithm 1 or 2 without substepping to compute e\tau mAv
14: if Algorithm 1 or 2 successfully converges for e\tau mAv then
15: tl \leftarrow tm, \tau l \leftarrow 2tl

16: else
17: tu \leftarrow tm, \tau u \leftarrow 2tu

18: endif
19: endwhile
20: \tau \leftarrow \tau l

In [6], \tau is chosen so that a Newton polynomial of degree L is sufficient for
approximating e\tau Sv, where S is a 2 \times 2 matrix whose spectrum is also enclosed in
[\alpha , 0] \times [- \beta , \beta]. In our experience, this approach tends to underestimate \tau , causing
the use of an unnecessarily large number of substeps. Algorithm 3 is more expensive,
but it produces a larger \tau , which in turn reduces the number of substeps and runtime
for both the polynomial and the rational Leja methods. When many matrix-vector
products with ehA need to be computed, the extra cost of Algorithm 3 is negligible.

4. Numerical results. We compare the robustness and efficiency of several
eigensolver and preconditioner combinations at computing a few rightmost eigenvalues
for a representative set of test problems, many of which arise from PDEs. Several
methods for computing the action of the matrix exponential are also compared.

4.1. Test problems. We consider twelve test problems divided into two groups.
The first group of six, namely Tolosa [4], Obstacle (see [11, Chap. 10] and [13]), Cavity
(see [11, Chap. 8] and [13]), Plate [11, Chap. 8], Crystal [4], and Aerofoil [41], are
summarized as follows.

\bullet They stem from a variety of applications: physical chemistry (Crystal), fluid
mechanics (Obstacle, Cavity, and Plate), and aerodynamics (Tolosa and
Aerofoil).

\bullet All six matrices are real and nonsymmetric with n = 4000, 9512, 9539, 9539,
10000, and 16388, respectively. The Tolosa, Crystal, and Aerofoil matrices
are sparse.

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3355

\bullet The rightmost eigenvalues of the Tolosa, Obstacle, Cavity, and Aerofoil matri-
ces have negative real parts, and those of the Plate and Crystal matrices have
positive real parts. The Crystal matrix is the only matrix whose rightmost
eigenvalue is real.

\bullet The Crystal matrix arises from a finite difference discretization, and the Aero-
foil matrix arises from a finite volume discretization.

\bullet The Obstacle, Cavity, and Plate matrices arise from finite element discretiza-
tions of three models of the incompressible Navier--Stokes equations whose
respective Reynolds numbers are 350, 7800, and 7850. Here, A = M - 1J ,
where J is the Jacobian matrix, M is the mass matrix, and both J and M
are sparse. Note that A is never explicitly formed.

\bullet The Tolosa and Crystal matrices are available from the Matrix Market [4],
whereas the Obstacle, Cavity , Plate, and Aerofoil matrices are made available
by the authors.

The second group of problems are created ``artificially"" based on the problems
from the first group (hence the extra ``(a)"" in their names). Let A be any n \times n
matrix in the first group and continue to denote its eigenvalues by \{ \mu i\} ni=1, where
Re(\mu 1) \geq Re(\mu 2) \geq \cdot \cdot \cdot \geq Re(\mu n). Let MaxIm = max \{ \{ | Im(\mu i)| \} ni=1 , 200\} . The
artificial counterpart of A is of size (n + 4) \times (n + 4) and has the block-diagonal
structure diag\{ A,G\} where G \in R4\times 4 and its eigenvalues are

\mu G
1,2 =

\Biggl\{
\pm iMaxIm if Re(\mu 1) < 0,
1
2 (Re(\mu 1) + Re(\mu 2))\pm iMaxIm otherwise,

\mu G
3,4 =

\Biggl\{
\pm i 12MaxIm if Re(\mu 1) < 0,
1
2 (Re(\mu 1) + Re(\mu 2))\pm i 12MaxIm otherwise.

By construction, the eigenvalues of the artificial matrix corresponding to A are \{ \mu i\} ni=1\bigcup
\{ \mu G

i \} 4i=1, among which the rightmost or second rightmost pair have the largest (in
modulus) imaginary part and the four added eigenvalues have the same real part.
When A = M - 1J such as for the Obstacle, Cavity, and Plate problems, we augment
M and J instead so that the same four eigenvalues \{ \mu G

i \} 4i=1 are added to the spec-
trum of A. We introduce the second group of matrices to increase the moduli of the
imaginary parts of the target eigenvalues. As can be seen from sections 4.3 and 4.4,
this modification creates rather challenging test problems.

4.2. Description of the numerical experiments. An iterative eigensolver
for computing k (k \ll n) target eigenvalues of A often has the following inner-outer
structure:

Outer iteration: iteration of the eigensolver applied to \scrT (A),
Inner iteration: iteration of an algorithm for approximating \scrT (A)v,

where \scrT is a suitable transformation (preconditioner). We compare the performance
of five preconditioners: \scrE : A \rightarrow ehA (exponential transformation), \scrI : A \rightarrow A (no
preconditioner), \scrS 0 : A \rightarrow A - 1 (shift-invert transformation with zero shift), \scrC \sigma 1,\sigma 2

:
A\rightarrow (A - \sigma 1I)

 - 1(A - \sigma 2I) (Cayley transformation), and \scrK : A\rightarrow 1
2 (A\otimes I + I \otimes A)

(Kronecker sum transformation). The eigensolver for the first four transformations is
the implicitly restarted Arnoldi's (IRA) method [39] implemented in the MATLAB
eigs, and the eigensolver for the Kronecker sum transformation is the Lyapunov
inverse iteration [12, 13]. A brief description of the Lyapunov inverse iteration can be
found in Appendix B; roughly speaking, it is a version of inverse iteration designed

A3356 MINGHAO W. ROSTAMI AND FEI XUE

specifically for \scrK (A) by exploiting the structure of its eigenvectors. Our targets are
the five rightmost eigenvalues of A.

When \scrT = \scrE , we first apply eigs with the option lm to find the five largest
eigenvalues \{ \lambda j\} 5j=1 of ehA and their eigenvectors \{ xj\} 5j=1;

3 and then we recover the

five rightmost eigenvalues \{ \mu j\} 5j=1 of A according to Corollary 2.2. The inner iteration

is computing a matrix-vector product ehAv.
When \scrT = \scrI , i.e., no preconditioner is used, we apply eigs with the option lr

(largest real part) to A. The inner iteration is multiplying A to a vector.
When \scrT = \scrS 0, we apply eigs with the option sm (smallest magnitude) to find the\widehat k (5 \leq \widehat k \ll n) eigenvalues of A closest to the origin. The five rightmost eigenvalues

among these \widehat k computed ones are then selected. However, it is impossible to know a
priori how large \widehat k needs to be to guarantee finding the five desired eigenvalues. Our
heuristic is to choose \widehat k = 100. The inner iteration of this approach is solving a linear
system whose coefficient matrix is A.

When \scrT = \scrC \sigma 1,\sigma 2
, we first apply eigs with the option lm to find the \widehat k largest

eigenvalues of \scrC \sigma 1,\sigma 2
and their eigenvectors; since A and \scrC \sigma 1,\sigma 2

have the same eigen-

vectors, we can then recover \widehat k eigenvalues of A using the Rayleigh--Ritz projection.
Finally, the five rightmost ones among the retrieved eigenvalues are chosen. It is
again not clear how large \widehat k should be to ensure that the five rightmost eigenvalues of
A will be found, and \widehat k = 100 is chosen again. In addition, we fix \sigma 1 = 0 and try a
sequence of values for \sigma 2, namely \{ 1, 2\}

\bigcup
\{ 10 - \ell \} 3\ell =1

\bigcup
\{ 2\times 10 - \ell \} 3\ell =1

\bigcup
\{ 5\times 10 - \ell \} 3\ell =1.

The inner iteration is also solving a linear system with coefficient matrix A.
We choose the parameters of eigs as follows. The dimension of the Krylov

subspace (or the parameter p) is set to 25 for \scrT = \scrE and 200 for \scrT = \scrI , \scrS 0 or
\scrC \sigma 1,\sigma 2 The tolerance tol is set to 10 - 8, the starting vector v0 is the vector of all 1's,
the maximal iteration count maxit is 50000, and default values are used for all other
parameters of eigs.

We use the single-step Lyapunov inverse iteration proposed in [13] (see Appendix
B for a brief review) to compute the smallest eigenvalue of \scrK (A). The five rightmost
eigenvalues of A can be recovered subsequently at little additional cost. This method
mainly requires the solution to a large-scale Lyapunov equation, which is approxi-
mated by a modified version [12] of the rational Krylov subspace method (RKSM)
[10].

The implementation of all five eigensolver and preconditioner combinations needs
to be slightly modified for the Obstacle, Cavity, and Plate problems since A = M - 1J is
not explicitly formed. For instance, the matrix-vector product Av should be computed
by solving My = Jv for y, and the solution y to (A - \sigma I)y = x should be found by
solving (J - \sigma M)y = Mx.

All of the linear systems in our experiments are solved using the MATLAB back-
slash (a sparse Gaussian elimination). If multiple linear systems share a coefficient
matrix, we prefactorize the matrix by the lu function. All experiments are done in
MATLAB version R2016b on an iMac desktop equipped with a 3.2GHz Intel Core i5
processor, 32GB of 1867 MHz DDR3 RAM, and Mac OS X 10.11.6. The runtimes
are measured by the tic and toc commands in MATLAB.

3The MATLAB command is [V,D] = eigs(afun,length(A),5,`lm',opts), where afun is a rou-
tine that approximates ehAv for a given vector v. The input opts is a structure that specifies the
values of some parameters.

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3357

4.3. Comparison of four methods for computing \bfite \bfith \bfitA v. We compare the
following four methods: the standard Krylov method [36], the RD-rational method
[27], the polynomial Leja method (Algorithm 1) [6, 8], and the rational Leja method
(Algorithm 2) proposed in section 3.2. We fix v to be the vector of all ones in this
subsection.

The maximal degree of Newton polynomials (L in section 3) is 100 for Algorithm 1
and 45 for Algorithm 2, whereas the maximal number of Arnoldi steps is 100 for both
Krylov methods. The size of the substep (\tau in section 3) of each method is found by
Algorithm 3. For the computation of e\tau Av in all four methods, we use the stopping

criterion \| \Delta \bfw \|
\| \bfw \| \leq 10 - 9 (reltol in section 3), where w is the current estimate to e\tau Av

and \Delta w is the difference between w and the previous estimate to e\tau Av. However, the
accuracy of the final estimate to ehAv produced by each method remains unknown.
Consequently, although the same stopping criterion is used for the computation of
e\tau Av, the estimates to ehAv obtained by the four methods may not have the same
order of accuracy. In addition, since both rational methods use a single pole, the
coefficient matrix of the linear systems arising from either method is prefactorized.

The numbers of substeps and the runtimes required by all methods are reported
in Table 2. In terms of runtime, the RD-rational method is clearly the winner: Out
of the twelve test problems, it converges the fastest in nine problems and the second
fastest in two problems; its advantage is especially pronounced for the second group
of test problems whose rightmost few eigenvalues have large imaginary parts. Except
when applied to the two Tolosa matrices, this method does not need substepping.
The rational Leja method (Algorithm 2) is the second most efficient, converging the
fastest in two problems and the second fastest in seven problems. In terms of storage,
the two Leja methods are superior since they only require storing four vectors whereas
both Krylov methods need to store as many as 100 vectors. Therefore, we recommend
using the RD-rational method if storage is not a concern and the rational Leja method
otherwise.

Knowing the rough shape of the spectrum of A also helps us make a decision as
to which method should be used. As shown in Table 2, when the spectrum of A is
``tall and skinny,"" such as for the two Tolosa matrices (see the left panel of Figure 2),
the polynomial Leja method converges considerably faster than other methods. On
the other hand, when the spectrum of A is ``short and wide,"" such as for the Crystal,
Obstacle, Plate, and Cavity matrices and their artificial counterparts, the two rational
methods are significantly more efficient. We note that the matrices arising from spatial
discretization of PDEs typically fall into this category. The width of the spectra of
both Aerofoil matrices is only slightly larger than their height and accordingly, the
RD-rational method is only slightly faster than the polynomial Leja method. By
comparing the performance of the rational Leja method on the two groups of test
problems, we also observe that this method deteriorates as the imaginary parts of a
few rightmost eigenvalues grow. It can again be explained by Figure 3: the rational
function \Upsilon L,L(x) approximates ex poorly if both Re(x) and | Im(x)| are large; for such
an x, a small substep size \tau is necessary to make \Upsilon L,L(\tau x) a good approximation to
e\tau x. By contrast, the performance of the RD-rational method is largely insensitive to
the growth in the imaginary parts of the few rightmost eigenvalues.

4.4. Comparison of eigensolver and preconditioner combinations. In
Tables 3 to 7, we present the results of the following five pairs of eigensolver and pre-
conditioner: eigs with no preconditioner, eigs with the shift-invert transformation,
eigs with the Cayley transformation, Lyapunov inverse iteration with the Kronecker

A3358 MINGHAO W. ROSTAMI AND FEI XUE

Table 2
Performance comparison among four methods for approximating ehAv with h = 1, v =

[1, . . . , 1]T , and reltol = 10 - 9. (The runtimes are measured in seconds.)

P-Leja(100) Arnoldi(100) R-Leja(45) RD(100)
substep run substep run substep run substep run

Problem count T time count T time count T time count T rime
Tolosa 96 0.315 71 9.391 494 2.360 41 5.965
Aerofoil 20 1.223 10 3.607 36 9.265 1 0.923
Crystal 62 0.547 42 3.899 1 0.030 1 0.108
Obstacle 63 11.675 24 7.554 3 0.397 1 0.397
Plate 48 10.651 24 8.944 7 1.761 1 0.659
Cavity 5061 868.723 831 155.664 14 1.687 1 0.648
Tolosa (a) 119 0.385 72 9.609 494 3.278 41 6.024
Aerofoil (a) 24 1.530 11 3.742 77 29.438 1 1.256
Crystal (a) 94 0.891 49 7.347 21 1.015 1 0.116
Obstacle (a) 64 14.173 26 9.195 18 2.948 1 0.409
Plate (a) 64 14.451 27 9.921 20 4.779 1 0.665
Cavity (a) 5026 960.136 913 267.926 30 5.629 1 0.691

Table 3
The performance of eigs(lm) applied to ehA (Krylov subspace dim. 25, tol = 10 - 8).

Substep eigs Run eig-values min eig- max eig-
Problem Method h count T iter time found residual residual

Tolosa P-Leja(100) 0.5 48 5 28.14 all 6 2.66 10 - 9 5.15 10 - 7

Aerofoil RD(100) 10 6 3 286.77 all 6 2.71 10 - 7 3.04 10 - 6

Crystal R-Leja(45) 0.5 1 2 1.66 all 5 1.46 10 - 11 3.80 10 - 11

Obstacle R-Leja(45) 2 5 1 13.75 all 5 7.02 10 - 11 8.38 10 - 9

Plate RD(100) 1 1 4 49.90 all 6 6.22 10 - 9 1.97 10 - 8

Cavity RD(100) 5 4 4 166.30 all 5 1.03 10 - 7 5.84 10 - 6

Tolosa (a) P-Leja(100) 0.5 36 5 33.98 all 6 1.63 10 - 9 3.78 10 - 9

Aerofoil (a) RD(100) 10 9 2 309.21 all 6 2.59 10 - 9 3.85 10 - 7

Crystal (a) RD(100) 0.5 1 1 1.79 all 5 3.23 10 - 9 4.33 10 - 8

Obstacle (a) RD(100) 2 2 2 19.28 all 6 6.52 10 - 13 3.10 10 - 9

Plate (a) RD(100) 1 1 4 55.47 all 6 1.75 10 - 11 4.43 10 - 9

Cavity (a) RD(100) 5 4 4 157.23 all 6 7.92 10 - 13 1.62 10 - 7

sum transformation, and eigs with the exponential transformation. The accuracy of

a computed eigenpair (\widehat \mu j , \widehat xj) is measured by the relative residual norm
\| A\widehat \bfx j - \widehat \mu j\widehat \bfx j\| 2

\| A\widehat \bfx j\| 2

or
\| J\widehat \bfx j - \widehat \mu jM\widehat \bfx j\| 2

\| J\widehat \bfx j\| 2
. The runtimes are again measured in seconds.

As we see from Tables 3--7, applying eigs(lm) to ehA is clearly the most robust
approach since it is the only one that can find all the target eigenvalues for every
test problem. For each test problem, the method that computes eAv the fastest (see
section 4.3) is used to compute ehAv in eigs. As h increases, fewer outer iterations
(eigs) are necessary because of statement 2 of Corollary 2.2, but the inner iteration
(computing ehAv) becomes more expensive. The values of h in Table 3 are chosen to
strike a balance between the inner and outer iteration counts. More specifically, for
each problem, we choose the smallest h from \{ 0.5, 1, 2, 5, 10\} such that eigs(lm) for
ehA with tol = 0.01 converges in 25 Arnoldi steps before the first restart.

When eigs(lr) is applied to A (see Table 4), it looks for the target eigenvectors in
a Krylov subspace of A. Therefore, this approach has difficulties finding the rightmost
eigenvalues whose moduli are small. It explains why eigs(lr) tends to work better on
the artificial problems: The moduli of the target eigenvalues of an artificial problem
are always larger than those of the corresponding original problem. Overall, the

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3359

convergence of eigs(lr) is very slow, even with a large Krylov subspace of dimension
200. Moreover, this method is unable to find the complete set of target eigenvalues
for five problems.

Table 4
The performance of eigs(lr) applied to A (Krylov subspace dim. 200, tol = 10 - 8).

eigs Run Eigenvalues min eigen- max eigen-
Problem iter time found residual residual
Tolosa 50000 6804.25 \varnothing - -
Aerofoil 2820 2722.50 all 6 7.83 10 - 11 9.11 10 - 9

Crystal 579 170.09 all 5 6.83 10 - 12 9.73 10 - 9

Obstacle 1123 691.68 all 5 1.22 10 - 11 7.11 10 - 10

Plate 6629 5707.81 \{ \mu 7,8,13,14\} - -
Cavity 9020 7517.61 \varnothing - -
Tolosa (a) 50000 6595.70 \{ \mu \bfone ,\bftwo ,\bfthree ,\bffour \} 2.19 10 - 12 4.85 10 - 12

Aerofoil (a) 712 752.61 all 6 3.42 10 - 15 9.87 10 - 9

Crystal (a) 1594 497.21 all 5 1.27 10 - 13 9.89 10 - 9

Obstacle (a) 269 217.88 all 6 2.54 10 - 15 1.08 10 - 9

Plate (a) 342 440.04 all 6 2.15 10 - 14 1.10 10 - 8

Cavity (a) 1487 1386.43 \{ \mu \bfone ,\bftwo ,\bfthree ,\bffour \} 1.56 10 - 12 2.11 10 - 12

Table 5
The performance of eigs(sm) applied to A (Krylov subspace dim. 200, tol = 10 - 8).

eigs Run Eigenvalues min eigen- max eigen-
Problem iter time found residual residual

Tolosa 4 0.48 \{ \mu 5,6,9,10,13,14\} 1.93 10 - 13 1.93 10 - 13

Aerofoil 19 20.44 all 6 2.01 10 - 6 6.03 10 - 6

Crystal 1 0.76 \{ \mu 97,98,99,100,101\} - -
Obstacle 3 2.04 all 5 1.46 10 - 11 1.72 10 - 11

Plate 2 1.77 \{ \mu 47\} - -
Cavity 3 2.12 \{ \mu \bfthree ,\bffour ,\bffive ,8,11,12\} 2.17 10 - 11 3.36 10 - 10

Tolosa (a) 4 0.48 \{ \mu 9,10,13,14,17,18\} - -
Aerofoil (a) 19 21.53 \{ \mu \bffive ,\bfsix ,7,8,9,10\} 6.51 10 - 6 6.51 10 - 6

Crystal (a) 1 0.75 \{ \mu 101,102,103,104,105\} - -
Obstacle (a) 3 2.01 \{ \mu \bffive ,\bfsix ,7,8,9,10\} 2.73 10 - 11 2.73 10 - 11

Plate (a) 2 1.75 \{ \mu 51\} - -
Cavity (a) 3 2.11 \{ \mu 7,8,9,12,15,16\} - -

When eigs(sm) is applied to A (see Table 5), it searches for the target eigenvec-
tors in a Krylov subspace of A - 1 instead and may fail to find the rightmost eigenvalues
whose moduli are large. The performance of this approach is worse when it is applied
to the artificial matrices for the same reason that eigs(lr) works better on them;
in fact, it is not able to find the complete set of target eigenvalues for any artificial
matrix. Applying eigs(lm) to \scrC 0,\sigma 2(A) produces similar results (see Table 6). Re-
call from section 4.2 that various values of \sigma 2 are considered. In Table 6, we only
report the best results and the values of \sigma 2 used to produce them. Both eigs(sm)

applied to A and eigs(lm) applied to \scrC 0,\sigma 2
(A) converge rapidly but often to the

wrong eigenvalues.
The numerical results of Lyapunov inverse iteration (see Algorithm 4) are shown in

Table 7. This method is rather restrictive in that it may not converge to the rightmost
eigenvalue of A if A is not real or if the rightmost eigenvalue of A has positive real
part, i.e., if one of the assumptions of Theorem B.1 is violated. The Crystal matrix,
Plate matrix, and their artificial counterparts all have eigenvalues with positive real
parts; indeed, when A is one of them, the real part of the rightmost eigenvalue of

A3360 MINGHAO W. ROSTAMI AND FEI XUE

Table 6
The performance of eigs(lm) applied to \scrC 0,\sigma 2 (A) (Krylov subspace dim. 200, tol = 10 - 8).

eigs Run Eigenvalues min eigen- max eigen-
Problem \sigma 2 iter time found residual residual

Tolosa [0.002, 0.01] 1 0.24 \{ \mu \bffive ,\bfsix ,9,10,13,14\} 7.31 10 - 8 7.31 10 - 8

Aerofoil [1.7, 2] 24 25.09 all 6 4.50 10 - 6 5.34 10 - 6

Crystal [0.001, 2] 1 0.85 \varnothing - -
Obstacle [0.001, 2] 3 2.23 \{ \mu \bfthree ,\bffour ,\bffive ,\bfsix ,9,10\} 1.83 10 - 11 2.91 10 - 11

Plate [0.001, 2] 3 2.30 \{ \mu 47\} - -
Cavity [1.4, 2] 4 2.71 \{ \mu \bfthree ,\bffour ,\bffive ,8,11,12\} 2.96 10 - 11 3.09 10 - 10

Tolosa (a) [0.002, 0.01] 1 0.25 \{ \mu 9,10,13,14,17,18\} - -
Aerofoil (a) [1.7, 2] 23 25.02 \{ \mu \bffive ,\bfsix ,7,8,9,10\} 1.27 10 - 6 1.27 10 - 6

Crystal (a) [0.001, 2] 1 0.85 \varnothing - -
Obstacle (a) [0.001, 2] 7 3.57 \{ \mu 7,8,9,10,13,14\} - -
Plate (a) [0.001, 2] 3 2.25 \{ \mu 51\} - -
Cavity (a) [1.4, 2] 4 2.67 \{ \mu 7,8,9,12,15,16\} - -

Table 7
The performance of Lyapunov inverse iteration (Algorithm 4).

Run Subspace Eigenvalues min eigen- max eigen-
Problem lyaptol eigtol time dim. found residual residual

Tolosa 10 - 3 10 - 2 9.40 180 all 6 5.06 10 - 11 1.26 10 - 9

Aerofoil 10 - 8 10 - 7 41.40 120 all 6 1.02 10 - 11 2.55 10 - 9

Crystal 10 - 6 10 - 5 > 10000 - - - -
Obstacle 10 - 7 10 - 6 8.39 60 all 5 4.51 10 - 12 1.99 10 - 8

Plate 10 - 6 10 - 5 23.40 100 \{ \mu 43,44,47\} 1.07 10 - 9 7.28 10 - 9

Cavity 10 - 8 10 - 7 132.24 280 all 6 7.84 10 - 11 6.60 10 - 7

Tolosa (a) 10 - 3 10 - 2 9.45 180 \{ \mu 5:10\} 5.95 10 - 11 9.93 10 - 10

Aerofoil (a) 10 - 8 10 - 7 40.84 100 \{ \mu 5:10\} 1.61 10 - 9 2.04 10 - 5

Crystal (a) 10 - 6 10 - 5 > 10000 - - - -
Obstacle (a) 10 - 7 10 - 6 512.79 790 all 6 2.49 10 - 14 1.37 10 - 10

Plate (a) 10 - 7 10 - 6 231.47 420 \{ \mu 47,48\} 2.54 10 - 11 2.95 10 - 3

Cavity (a) 10 - 8 10 - 7 1217.84 1000 all 6 1.81 10 - 13 1.17 10 - 10

A is not the smallest eigenvalue of \scrK (A). In addition, Lyapunov solver encounters
difficulties when solving (25) if A is the Crystal matrix or its artificial counterpart
because both matrices are ill-conditioned. Even when all the assumptions of Theorem
B.1 are satisfied, Lyapunov inverse iteration may converge to the wrong eigenvalues
or suffer from slow convergence if the target eigenvalues have very large imaginary
parts. This can be seen by comparing its performance on the two groups of test
problems. For instance, in theory, it should work for the Tolosa matrix, Aerofoil
matrix, and their artificial counterparts; in the numerical experiments, however, it
fails to find most of the target eigenvalues for the two artificial matrices, indicating
that the Lyapunov equation (25) is not solved accurately enough. Moreover, although
this approach is able to find all of the target eigenvalues for the artificial Obstacle and
Cavity matrices, it requires significantly longer runtimes and larger Krylov subspaces
than it does when applied to the original matrices. As can be seen in Table 3, thanks
to the RD-rational method, the runtime required by applying eigs(lm) to ehA is
more or less the same whether A is an original matrix or its artificial counterpart.

4.5. Relaxing the substep size for the rational Leja method. Our main
goal is to reliably compute the rightmost eigenvalues of A reasonably accurately,
which can be guaranteed as long as ehAv is approximated to a commensurate level of
accuracy. In this section, we show that using a larger substep size \tau in the computation

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3361

of ehAv can reduce the runtimes for a few problems recorded in Table 3 without
significantly compromising the accuracies of the target eigenpairs.

In fact, as shown in [38, sect. 11], the difference between the true and computable
eigenresiduals of the Ritz pairs extracted from an inexact Krylov subspace is propor-
tional to the errors of the matrix-vector multiplications performed while constructing
the Krylov subspace. In our new approach, as long as the accuracy of ehAv is com-
parable to the computable residuals (tol = 10 - 8 used to terminate eigs), eigs with
inexact ehAv should deliver eigenpairs that are as accurate as those found by eigs

with exact ehAv.

Table 8
The performance of eigs(lm) applied to ehA (Krylov subspace dim. 25, tol = 10 - 8, and ehAv

is computed using aggressive substepping).

eigs Run eig-vals min eig- max eig-
Problem Method h Tagrs T0/Tagrs iter time found residual residual

Tolosa P-Leja(100) 0.5 30 1.6 4 15.90 all 6 3.20 10 - 9 3.70 10 - 7

Aerofoil R-Leja(45) 10 2 180 4 46.47 all 6 3.61 10 - 10 1.67 10 - 7

Obstacle R-Leja(45) 2 3 1.6667 1 9.30 all 5 7.62 10 - 10 1.95 10 - 8

Cavity R-Leja(45) 5 9 7.4444 4 107.35 all 5 3.30 10 - 9 9.98 10 - 7

In light of this convergence result, we propose adopting the following aggressive
substepping strategy for computing ehAv. As in sections 4.3 and 4.4, we first find a
substep size \tau 0 by applying Algorithm 3 with reltol = 10 - 9 and compute an approxi-
mation u0 \approx ehAv using T0 = \lceil h/\tau 0\rceil substeps. Then we keep decreasing the number
of substeps and recomputing ehAv until we identify the smallest number of substeps,

Tagrs, such that
\| \bfu agrs - \bfu 0\|

\| \bfu 0\| \leq 10 - 6 is still satisfied, where uagrs \approx ehAv is computed

using Tagrs substeps. Once such a new substep size has been determined, it is used
in all of the subsequent approximations to ehAv, with the original stopping criterion
disabled.

In Table 8, we show the results of applying eigs(lm) with aggressive substepping
to ehA for some original test problems. For the Tolosa matrix, the polynomial Leja
method with aggressive substepping is used to compute ehAv; for the other problems,
the rational Leja method with substepping is chosen. (Note that the RD-rational
method was used in Table 3 for the Aerofoil and Cavity matrices.) The Crystal and
Plate matrices are not considered because the substep count T0 = 1 in Table 3 cannot
be further reduced. By comparing the results in Tables 3 and 8, we see that aggressive
substepping reduces the runtimes without degrading the accuracy of the computed
eigenpairs; for instance, it is able to reduce the runtime required by the Aerofoil
matrix from 289 to 46 seconds. However, even a mild reduction in the number of
substeps of the RD-rational method does produce much less accurate eigenpairs.

The rational Leja method with aggressive substepping does not work on the arti-
ficial problems. This can be explained by examining how well \Upsilon L,L(x) approximates
ex at the eigenvalues of a matrix. Consider the two Aerofoil matrices. In Figure 4,
we plot the rightmost part of the spectrum of \tau A, where \tau = 2 and A is the original
Aerofoil matrix (left panel) or its artificial counterpart (right panel); the contour plot
of log10 | ex - \Upsilon L,L(x)| is shown in both panels. We see that the eigenvalues of \tau A in
the left panel lie in a region where the error | ex - \Upsilon L,L(x)| is small; however, the four
rightmost eigenvalues of \tau A (marked by hexagons) in the right panel are in a region
where the approximation error is quite large. Therefore, although a substep size \tau = 2
can be used for the original Aerofoil matrix, a much smaller \tau must be used for its

A3362 MINGHAO W. ROSTAMI AND FEI XUE

artificial counterpart so that all of the eigenvalues of \tau A lie in the region of accurate
approximation. For all of the artificial matrices except the artificial Tolosa matrix,
the RD-rational method is still the most efficient.

Fig. 4. Left: The eigenvalues (red circles) of \tau A where \tau = 2 and A is the original Aerofoil.
Right: The eigenvalues (red circles and blue hexagons) of \tau A where A is the artificial Aerofoil. The
contour plot of log10 | ex - \Upsilon L,L(x)| is shown in both panels (a = 50, L = 45). (Figure is in color
online.)

Finally, we compare the runtimes and storage of the three most robust approaches
considered in section 4.4, namely, eigs(lm) applied to ehA, Lyapunov inverse iteration
applied to \scrK (A), and eigs(lr) applied to A. As can be seen from Tables 4 and 7, the
latter two approaches are not always successful at finding all of the target eigenvalues.
Since robustness is our primary concern, we only consider the problems for which
all three methods succeed. The runtimes and storage (measured by the number of
vectors in Rn) of the three methods are reported in Table 9. The rational Leja method
with aggressive substepping is used for the Aerofoil and Obstacle matrices, and the
RD-rational method is used for the artificial Obstacle matrix. The storage required
by eig(lm) with \scrT = ehA is 29 or 125 vectors: 25 Arnoldi vectors built by eigs,
and 4 (Leja) or 100 (RD-rational) additional vectors for the computation of ehAv.
In Lyapunov inverse iteration, it is necessary to store the basis vectors of a Krylov
subspace built for solving (25), and the dimension of this subspace varies drastically
from problem to problem. When applying eigs(lr) with \scrT = I, we have to store 200
basis vectors of a Krylov subspace constructed by eigs. Overall, applying eigs(lm)

with ehA requires the least storage and its runtime also compares favorably with that
of Lyapunov inverse iteration; its advantage is especially pronounced in the artificial
Obstacle problem.

Table 9
Performance comparison among eigs(lr) with \scrT = I, Lyapunov inverse iteration, and eigs(lm)

with \scrT = ehA on problems that can be solved successfully by all three methods.

eigs(lr) \scrT = I Lyapunov eigs(lm) \scrT = ehA

Problem storage runtime storage runtime storage runtime
Aerofoil 200 2723 120 41 4 + 25 46
Obstacle 200 692 60 8 4 + 25 9
Obstacle (a) 200 218 790 513 100 + 25 16

5. Applications in pseudospectral analysis. Compared to the rightmost
eigenvalue, the rightmost point of the \varepsilon -pseudospectrum or that of the real struc-
tured \varepsilon -pseudospectrum is a more robust measurement of stability. We continue to
denote the two pseudospectra of A by \Lambda \varepsilon (A) and \Lambda R

\varepsilon (A), respectively. A number of
fast algorithms [18, 19, 31] have been developed to find the rightmost points of \Lambda \varepsilon (A)
and \Lambda R

\varepsilon (A) for a large, sparse A. They iteratively produce a sequence of perturbation

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3363

matrices \{ E\ell \} m\ell =0 of unit norm and low rank such that the rightmost eigenvalues of
\{ A + \varepsilon E\ell \} m\ell =0 often converge to the rightmost point of \Lambda \varepsilon (A) or \Lambda R

\varepsilon (A). In all three
algorithms, the construction of the next perturbation matrix E\ell +1 relies on finding
the rightmost eigenvalue of A + \varepsilon E\ell and its corresponding eigenvector. As will be
shown in this section, the exponential transformation is a robust preconditioner for
A+ \varepsilon E\ell as well.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-200

-150

-100

-50

0

50

100

150

200

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-200

-150

-100

-50

0

50

100

150

200

Fig. 5. Eigenvalues of A and A\dagger in the Tolosa case. The circles in the left plot are the five
rightmost eigenvalues of A + 0.01 \cdot y1x\ast

1, and the diamonds in the right plot are the six rightmost
eigenvalues of A+ 0.01 \cdot U1V T

1 . In both plots, the crosses represent the six rightmost eigenvalues of
A, and the dashed line is the imaginary axis.

We will focus on the eigenvalue problems arising from the methods of [19, 31],
both of which employ a ``greedy"" approach of selecting the perturbation matrices.
The method of [19] is for finding the rightmost point of \Lambda \varepsilon (A). It chooses the initial
perturbation E0 to be the rank-1, norm-1 matrix y1x

\ast
1, where x1,y1 are the right

and left eigenvectors associated with a rightmost eigenvalue \mu 1 of A and are scaled
such that \| x1\| = \| y1\| = 1, y\ast

1x1 > 0. The method of [31] aims at computing the
rightmost point of \Lambda R

\varepsilon (A) and therefore has to restrict all of the perturbation matrices
to be real. It chooses the initial perturbation matrix E0 to be U1V

T
1 with U1\Sigma V

T
1

being the truncated singular value decomposition of Re(y1)Re(x
T
1) + Im(y1)Im(xT

1),
which is real and has rank at most two. Obviously, if \mu 1 is real, y1x

\ast
1 and U1V

T
1

coincide. All subsequent perturbation matrices in both algorithms are chosen in a
similar fashion. Let A\dagger denote A + \varepsilon y1x

\ast
1 or A + \varepsilon U1V

T
1 . In Figure 5, we display

a few rightmost eigenvalues of both A\dagger (with \varepsilon = 0.01) associated with the Tolosa
matrix. As can be seen in Figure 5, both perturbation matrices advance \mu 1 (the
rightmost eigenvalue of A with positive imaginary part) to the right; in particular,
the perturbation 0.01y1x

\ast
1 moves \mu 1 to the right of the imaginary axis. Interestingly,

the same matrix pushes \mu 1 to the left instead (the perturbed \mu 1 is not shown in the
left panel). Other eigenvalues of A are hardly affected by either perturbation. The
eigenvalues of A+ 0.01y1x

\ast
1 shown in the left panel do not appear in conjugate pairs

since this matrix is not real.
We briefly discuss some implementation details of Algorithms 1 (polynomial Leja)

and 2 (rational Leja) when applied to compute ehA
\dagger
v. It is not recommended to

explicitly form the dense matrix A\dagger ; instead, we should take full advantage of its
special structure, i.e., A\dagger is the sum of a sparse matrix A and a low-rank matrix
\varepsilon y1x

\ast
1 or \varepsilon U1V

T
1 . As the perturbations only seem to affect a few eigenvalues of A

and leave other eigenvalues unchanged, we use the spectral bounds \alpha and \beta of A in

A3364 MINGHAO W. ROSTAMI AND FEI XUE

Algorithm 1. If A\dagger = A+ \varepsilon y1x
\ast
1, then step 13 of Algorithm 1 needs to be changed to

r\leftarrow
\biggl(
2

d
A - \omega \ell - 1I

\biggr)
r+

2\varepsilon

d
y1(x

\ast
1r);

step 6 of Algorithm 2 can be replaced by the following lines:

solve (aI - \tau A)y\prime = (aI + \tau A)r+ \tau \varepsilon y1(x
\ast
1r) for y

\prime ,

solve (aI - \tau A)y\prime \prime = - \tau \varepsilon y1 for y\prime \prime ,

y\leftarrow y\prime - y\prime \prime (1 + x\ast
1y

\prime \prime) - 1(x\ast
1y

\prime),

which amount to solving (aI - \tau A\dagger)y = (aI+ \tau A\dagger)r for y by the Sherman--Morrison--
Woodbury formula. Note that the solve for y\prime \prime above only needs to be done once
throughout Algorithm 2. When A\dagger = A+ \varepsilon U1V

T
1 or the RD-rational method is used

to compute ehA
\dagger
v, a similar set of revisions can be made without difficulty.

Table 10
The performance of eigs(lm) applied to ehA

\dagger
where A\dagger = A+0.01\cdot y1x\ast

1 (aggressive substepping

is used when a Leja method is applied to compute ehA
\dagger
v).

eigs Run Eigenvalues min eigen- max eigen-
Problem Method iter time found residual residual

Tolosa P-Leja(100) 4 20.94 all 5 1.16 10 - 13 8.30 10 - 7

Obstacle R-Leja(45) 1 12.69 all 5 7.77 10 - 10 1.59 10 - 8

Cavity R-Leja(45) 4 119.36 all 5 2.50 10 - 9 9.06 10 - 7

Plate RD(100) 3 58.03 all 5 6.20 10 - 9 1.79 10 - 7

Crystal R-Leja(45) 2 2.91 all 5 6.88 10 - 14 6.90 10 - 8

Aerofoil R-Leja(45) 2 53.54 all 5 1.33 10 - 12 2.67 10 - 7

Table 11
The performance of eigs(lm) applied to ehA

\dagger
where A\dagger = A+0.01\cdot U1V T

1 (aggressive substepping

is used when a Leja method is applied to compute ehA
\dagger
v).

eigs Run Eigenvalues min eigen- max eigen-
Problem Method iter time found residual residual

Tolosa P-Leja(100) 4 17.28 all 6 3.08 10 - 10 7.49 10 - 8

Obstacle R-Leja(45) 1 10.22 all 5 7.11 10 - 10 1.46 10 - 8

Cavity R-Leja(45) 4 112.29 all 5 2.87 10 - 9 9.39 10 - 6

Plate RD(100) 5 80.83 all 6 1.85 10 - 9 3.98 10 - 8

Aerofoil R-Leja(45) 2 49.40 all 5 7.23 10 - 13 1.19 10 - 7

The performance of eigs(lm) applied to ehA
\dagger
is shown in Tables 10 and 11. This

method again finds all the target eigenvalues of A\dagger for every test problem; for brevity,
we only show the numerical results for the first group of test problems. The Crystal
problem appears in Table 10 but not in Table 11 since its rightmost eigenvalue is real
which implies that y1x

\ast = U1V
T
1 . The same values of h listed in Table 3 are used

here.
We emphasize that the exponential transformation is robust for the entire se-

quence of matrices \{ A\}
\bigcup
\{ A + \varepsilon E\ell \} m\ell =0 arising from the methods of [18, 19, 31],

whereas other preconditioners considered in section 4 may only work for a subset of
them. For example, in the Tolosa case, Lyapunov inverse iteration can be applied
to reliably calculate the rightmost eigenvalue of A (see Table 7). However, it is not
applicable to A\dagger = A + 0.01 \cdot y1x

\ast
1 since the real part of the rightmost eigenvalue of

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3365

A\dagger is not the smallest eigenvalue of \scrK (A\dagger) = 1
2 (A

\dagger \otimes I + I \otimes A\dagger). The Aerofoil prob-
lem demonstrates how unreliable the shift-invert transformation is in pseudospectral
analysis. It has been shown in Table 5 that the rightmost six eigenvalues of A can
be found by computing the 50 eigenvalues of A with smallest moduli. However, as
shown in Figure 6, even if we compute the 500 eigenvalues of A\dagger = A+ 0.01 \cdot U1V

T
1

with smallest moduli, we still miss its rightmost eigenvalue.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 6. Eigenvalues of A\dagger = A + 0.01 \cdot U1V T
1 in the Aerofoil case. The circles are the six

rightmost eigenvalues of A\dagger , and the plus signs are the 500 eigenvalues of A\dagger with smallest moduli.
The dashed line is the imaginary axis.

6. Conclusions. Our main contributions include a robust preconditioner for
computing a few rightmost eigenvalues of a large matrix and an efficient method
for approximating the action of the matrix exponential. Existing preconditioners for
the rightmost eigenvalues are either very sensitive to the choice of parameters or
only applicable to a limited subset of matrices. We propose using the exponential
transformation since the target eigenvalues of A correspond to the largest ones of ehA

(h > 0), which are easy to find by an iterative eigensolver. The preconditioner itself
does not require selecting any parameter and can be applied to any square, complex
matrix.

Computing the largest eigenvalues of ehA entails computing a sequence of matrix-
vector products ehAv, which is quite challenging for matrices with a spectrum of
large capacity. Based on an existing rational approximation of ex over (- \infty , 0] [42,
Chap. 25], we develop a new rational Leja method for computing ehAv. Compared to
the RD-rational method [27], it converges slower in most cases but requires consid-
erably less memory. Both rational methods have only one (repeated) pole, allowing
us to prefactorize the coefficient matrix or compute a preconditioner for it once and
for all. Compared to polynomial Leja [6, 8], our method converges faster overall and
requires the same memory. We also demonstrate the robustness of the proposed pre-
conditioner at solving the eigenvalue problems arising from pseudospectral analysis
[18, 19, 31].

The MATLAB codes and matrices that we use in the numerical experiments
are available from https://www.mathworks.com/matlabcentral/fileexchange/67267-
a-solver-for-the-rightmost-eigenvalues.

Appendix A. Computing \bfite \bfittau \bfitA v by the polynomial Leja method. Suppose
that the real and imaginary parts of the eigenvalues of A are contained in the intervals
[\alpha , \nu] and [- \beta , \beta], respectively, where \alpha < \nu and \beta \geq 0. We then find the ellipse

https://www.mathworks.com/matlabcentral/fileexchange/67267-a-solver-for-the-rightmost-eigenvalues
https://www.mathworks.com/matlabcentral/fileexchange/67267-a-solver-for-the-rightmost-eigenvalues
https://www.mathworks.com/matlabcentral/fileexchange/67267-a-solver-for-the-rightmost-eigenvalues

A3366 MINGHAO W. ROSTAMI AND FEI XUE

with smallest capacity,4 denoted by Esc, among all the ones enclosing the rectangle
[\alpha , \nu]\times [- \beta , \beta] on the complex plane. The domain K of Leja points is chosen to be the
interval between the two foci of Esc. The rationale behind this choice can be found in
[8] and the references therein. To avoid overflow and underflow, [30] suggests scaling
K to have capacity 1. In [6, 8], this is achieved by a change of variable. Assume that
(c, 0) is the center of Esc and d > 0 is half of the distance between its foci. Then
K is either the horizontal interval \{ (s, 0)| c - d \leq s \leq c + d\} or the vertical interval
\{ (c, t)| - d \leq t \leq d\} . Assume K is the former and introduce \xi \in [- 2, 2] that satisfies
x = c+ d

2\xi \in K. Then e\tau x can be approximated by the Newton interpolation formula

of g(\xi) = e\tau (c+
d
2 \xi) on Leja points \{ \xi j\} \ell j=0 \subset [- 2, 2], i.e.,

(20) e\tau x = g(\xi) \approx \widehat p\ell (\xi) = \sum \ell
j=0

\widehat dj\widehat rj(\xi), \xi \in [- 2, 2],

where

\widehat d0 = g[\xi 0] = g(\xi 0), \widehat d1 =
g[\xi 1] - g[\xi 0]

\xi 1 - \xi 0
, \widehat dj = g[\xi 1, . . . , \xi j] - g[\xi 0, . . . , \xi j - 1]

\xi j - \xi 0
for j \geq 2,

(21)

\widehat r0(\xi) = 1, \widehat rj(\xi) = (\xi - \xi 0) \cdot \cdot \cdot (\xi - \xi j - 1) =
\prod j - 1

i=0 (\xi - \xi i) for j \geq 1.

(22)

The formula (20) is over the domain [- 2, 2], which has capacity 1 as desired.
Since \xi = 2

d (x - c), by replacing \xi with 2
d (A - cI) in (20)--(22) and right-multiplying

both sides of them by v, we obtain the approximant

e\tau Av \approx \widehat p\ell \biggl(2

d
(A - cI)

\biggr)
v =

\sum \ell
j=0

\widehat dj\widehat rj \bigl(2
d (A - cI)

\bigr)
v

which can be updated via

\widehat r\ell +1

\biggl(
2

d
(A - cI)

\biggr)
v =

\biggl(
2

d
A -

\biggl(
2c

d
+ \xi \ell

\biggr)
I

\biggr) \widehat r\ell \biggl(2

d
(A - cI)

\biggr)
v for \ell \geq 0,(23)

\widehat p\ell +1

\biggl(
2

d
(A - cI)

\biggr)
v = \widehat p\ell \biggl(2

d
(A - cI)

\biggr)
v + \widehat d\ell +1\widehat r\ell +1

\biggl(
2

d
(A - cI)

\biggr)
v.

Equation (23) indicates that each update simply entails one matrix-vector product\bigl(
2
dA -

\bigl(
2c
d + \xi \ell

\bigr)
I
\bigr)
r. In the case where K is the vertical interval \{ (c, t)| - d \leq t \leq d\} ,

let \zeta \in i[- 2, 2] be such that x = c+ d
2\zeta \in K and compute a Newton polynomial in \zeta

similar to (20). The domain i[- 2, 2] of this polynomial also has capacity 1. The rest
of the derivation is very similar.

The Leja points \{ \xi j\} Lj=0 and \{ \zeta j\} Lj=0 can be precomputed because they are for
problem-independent reference domains. In [6, 8], whenever an imaginary Leja point
\zeta is chosen, its conjugate \zeta will be included in the sequence \{ \zeta j\} Lj=0 as well. Thus,
Algorithm 1 can be implemented in real arithmetic even when K is vertical (see [6]).
How to compute Leja points and divided differences is beyond the scope of this paper,
and we refer interested readers to [2] and [5].

Appendix B. Review of the Lyapunov inverse iteration. This method is
developed based on the following theorem (see also Theorems 2.1 and 2.2 of [13]).

4The capacity of an ellipse is the sum of its two semiaxes; see Remark 2.1 and (16) in [3] for how
to find the ellipse with smallest capacity given \alpha , \nu , and \beta . Equation (1.1) in [30] gives the definition
of capacity for a general compact set in C. Also see [42, pp. 92--94].

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3367

Theorem B.1. Assume that all of the eigenvalues of A \in Rn\times n have nonpositive
real parts and A also has a complete set of eigenvectors. Let \mu 1 denote a rightmost
eigenvalue of A. Then the eigenvalue of \scrK (A) = 1

2 (A \otimes I + I \otimes A) with smallest
modulus is \lambda 1 = Re(\mu 1). Furthermore, assume that \mu 1 is a simple eigenvalue of A,
and let x1 be an eigenvector associated with \mu 1.

1. If \mu 1 is real and the only rightmost eigenvalue of A, then the eigenvector of
\scrK (A) associated with \lambda 1 is z1 = cx1 \otimes x1 with c \not = 0.

2. If \mu 1 is not real and \mu 1, \mu 1 are the only rightmost eigenvalues of A, then the
eigenvector of \scrK (A) associated with \lambda 1 is z1 = c1x1 \otimes x1 + c2x1 \otimes x1, where
c1, c2 are not both zero.

Because of the correspondence between Kronecker products and Lyapunov equa-
tions [23, pp. 254--255], the eigenvalue problem \scrK (A)z = \lambda z can be written as

(24) AZ + ZAT = 2\lambda Z,

where Z \in Cn\times n and z = vec(Z). Under the same assumptions as in Theorem B.1,
\lambda 1 = Re(\mu 1) is the eigenvalue of (24) with smallest modulus and Z1 = c1x1x1

T +
c2x1x1

T (c1, c2 not both zero), which has rank 1 or 2, is the eigenvector associated
with \lambda 1. When c1, c2 \in R and c1 = c2 \not = 0, Z1 is real and symmetric. Let V DV T

be the truncated eigenvalue decomposition of such a Z1, where V has one or two
orthonormal columns. Since the column space of Z1 is the same as span\{ x1,x1\} , we
can recover the target eigenpair (\mu 1,x1) easily from that of V TAV .

Algorithm 4 A single-step Lyapunov inverse iteration for (27).

Input: A \in Rn\times n, V0 \in Rn, eigtol, lyaptol

Output: An approximation (\widehat \lambda , \widehat Z = \widehat V \widehat D\widehat V T) to (\lambda 1, Z1)

1: Let \widehat Z = V0V
T
0 and compute the truncated eigenvalue decomposition PCPT of

2S \widehat ZST .
2: Compute a low-rank approximate solution \widehat Y = WXWT to

(25) SY + Y ST = PCPT

that satisfies \| S \widehat Y + \widehat Y ST - PCPT \| F < lyaptol \cdot \| C\| F . W has d\ll n orthonormal
columns.

3: Compute the eigenpair (\widetilde \lambda 1, \widetilde Z1) of the small eigenvalue problem

(26) \widetilde S \widetilde Z + \widetilde Z \widetilde ST = 2\widetilde \lambda \widetilde S \widetilde Z \widetilde ST ,

where \widetilde S = WTSW . \widetilde \lambda 1 is the eigenvalue of (26) with smallest modulus. \widetilde Z1 is

real, symmetric, of rank 1 or 2, and \| \widetilde Z1\| F = 1. Compute its truncated eigenvalue

decomposition \widetilde V \widetilde D\widetilde V T .
4: Let \widehat \lambda = \widetilde \lambda 1 and \widehat Z = \widehat V \widehat D\widehat V T , where \widehat V = W \widetilde V and \widehat D = \widetilde D. Compute the residual

norm \| S \widehat Z + \widehat ZST - 2\widehat \lambda S \widehat ZST \| F associated with (27).

5: while \| S \widehat Z + \widehat ZST - 2\widehat \lambda S \widehat ZST \| F > eigtol do

6: Increase the rank of \widehat Y such that \| S \widehat Y + \widehat Y ST - PCPT \| F < lyaptol \cdot \| C\| F still
holds.

7: Repeat steps 3 and 4.

8: endwhile

A3368 MINGHAO W. ROSTAMI AND FEI XUE

Lyapunov inverse iteration refers to a version of inverse iteration developed for
eigenvalue problems with a similar structure as (24). It exploits the real, symmetric,
and low-rank structure of the target eigenvector Z1. Whereas each step of the standard
inverse iteration requires a linear solve, each step of Lyapunov inverse iteration entails
solving a Lyapunov equation whose right-hand side is of rank 1 or 2. Its solution is real,
symmetric, and can be approximated by a low-rank matrix, which allows for efficient
computation and storage. For an invertible A, let S = A - 1. In our experience, it is
more efficient to apply Lyapunov inverse iteration to

(27) SZ + ZST = 2\lambda SZST

instead, which is mathematically equivalent to (24).
Lyapunov inverse iteration often converges rapidly, requiring the solution of only

a few Lyapunov equations. In particular, it has been observed in [13] to converge
after only one step if the first Lyapunov equation is solved ``accurately enough"" (see
Theorem 4.1 and Corollary 4.2 of [13]). A single-step Lyapunov inverse iteration is
outlined in Algorithm 4.

In Algorithm 4, the matrices \widehat Y and \widehat Z are never explicitly formed; instead, we only
store their factors W , X, \widehat V , and \widehat D. In step 2, we use the rational Krylov subspace
method (RKSM) with adaptively chosen shifts [10] and a modification proposed in
[12] to solve the Lyapunov equation (25). The main cost of the modified RKSM [12]

for computing a rank-d approximate solution \widehat Y is the construction of a d-dimensional
Krylov subspace, which, in turn, entails d linear solves in the form of (I - sA)x = b
(or (M - sJ)x = b if A = M - 1J). The shift s > 0 is, in general, different for each
system. In step 3, the small eigenvalue problem (26) is solved using Lyapunov inverse

iteration as well, and the matrix \widetilde S can be obtained from RKSM as a ``by-product.""
When the approximate eigenpair (\widehat \lambda , \widehat Z) is not accurate enough, instead of performing
another step of inverse iteration, in step 6, we expand the existing Krylov subspace
built in step 2 to produce a new \widehat Y whose rank is higher. A new estimate (\widehat \lambda , \widehat Z) can

then be computed from this \widehat Y .
Not only can we apply Algorithm 4 to find the rightmost eigenvalue of A, as shown

in [44, sects. 4.3 and 4.4], we can also reuse certain intermediate computational results

of this algorithm such as \widehat Y and \widetilde S to compute a few other rightmost eigenvalues of A.

Acknowledgments. We thank Dr. Sebastian Timme at the University of Liv-
erpool for providing the Aerofoil matrix. We are also grateful to the referees for their
many suggestions and comments that helped improve our manuscript.

REFERENCES

[1] A. H. Al-Mohy and N. J. Higham, Computing the action of the matrix exponential, with
an application to exponential integrators, SIAM J. Sci. Comput., 33 (2011), pp. 488--511,
https://doi.org/10.1137/100788860.

[2] J. Baglama, D. Calvetti, and L. Reichel, Fast Leja points, Electron. Trans. Numer. Anal.,
7 (1998), pp. 124--140.

[3] L. Bergamaschi, M. Caliari, and M. Vianello, Efficient approximation of the exponential
operator for discrete 2D advection-diffusion problems, Numer. Linear Algebra Appl., 10
(2003), pp. 271--289.

[4] R. Boisvert, R. Pozo, K. Remington, B. Miller, and R. Lipman, Matrix Market, available
online from http://math.nist.gov/MatrixMarket/.

[5] M. Caliari, Accurate evaluation of divided differences for polynomial interpolation of expo-
nential propagators, Computing, 80 (2007), pp. 189--201.

[6] M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer, Comparison of software for com-
puting the action of the matrix exponential, BIT, 54 (2014), pp. 113--128.

https://doi.org/10.1137/100788860
http://math.nist.gov/MatrixMarket/

LINEAR STABILITY ANALYSIS AND MATRIX EXPONENTIAL A3369

[7] M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer, The Leja method revisited:
Backward error analysis for the matrix exponential, SIAM J. Sci. Comput., 38 (2016),
pp. A1639--A1661, https://doi.org/10.1137/15M1027620.

[8] M. Caliari, M. Vianello, and L. Bergamaschi, Interpolating discrete advection-diffusion
propagators at Leja sequences, J. Comput. Appl. Math., 172 (2004), pp. 79--99.

[9] V. Druskin, L. Knizhnerman, and V. Simoncini, Analysis of the rational Krylov subspace
and ADI methods for solving the Lyapunov equation, SIAM J. Numer. Anal., 49 (2011),
pp. 1875--1898, https://doi.org/10.1137/100813257.

[10] V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical
systems, Systems Control Lett., 60 (2011), pp. 546--560.

[11] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative Solvers with
Applications in Incompressible Fluid Dynamics, Oxford University Press, Oxford, 2014.

[12] H. C. Elman and M. W. Rostami, Efficient iterative algorithms for linear stability analysis
of incompressible flows, IMA J. Numer. Anal., 36 (2016), pp. 296--316.

[13] H. C. Elman and M. Wu, Lyapunov inverse iteration for computing a few rightmost eigen-
values of large generalized eigenvalue problems, SIAM J. Matrix Anal. Appl., 34 (2013),
pp. 1685--1707, https://doi.org/10.1137/120897468.

[14] T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the numerical so-
lution of large sparse generalized symmetric eigenvalue problems, Math. Comp., 35 (1980),
pp. 1251--1268.

[15] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations. II, Proc. Nat.
Acad. Sci. U.S.A., 36 (1950), pp. 31--35.

[16] T. J. Garratt, G. Moore, and A. Spence, A generalised Cayley transforms for the nu-
merical detection of Hopf bifurcations in large systems, in Contributions in Numerical
Mathematics, R. P. Agarwal, ed., World Scientific, Singapore, 1993, pp. 177--195.

[17] W. J. F. Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM,
Philadelphia, 2000, https://doi.org/10.1137/1.9780898719543.

[18] N. Guglielmi and C. Lubich, Low-rank dynamics for computing extremal points of real pseu-
dospectra, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 40--66, https://doi.org/10.1137/
120862399.

[19] N. Guglielmi and M. L. Overton, Fast algorithms for the approximation of the pseudospectral
abscissa and pseudospectral radius of a matrix, SIAM J. Matrix Anal. Appl., 32 (2011),
pp. 1166--1192, https://doi.org/10.1137/100817048.

[20] S. G\"uttel, Rational Krylov approximation of matrix functions: Numerical methods and opti-
mal pole selection, GAMM-Mitt, 36 (2013), pp. 8--31.

[21] F. B. Hildebrand, Introduction to Numerical Analysis, 2nd ed., McGraw-Hill, New York,
1974.

[22] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponen-
tial operator, SIAM J. Numer. Anal., 34 (1997), pp. 1911--1925, https://doi.org/10.1137/
S0036142995280572.

[23] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,
Cambridge, UK, 1991.

[24] K. Meerbergen and D. Roose, Matrix transformations for computing rightmost eigenval-
ues of large sparse non-symmetric eigenvalue problems, IMA J. Numer. Anal., 16 (1996),
pp. 297--346.

[25] K. Meerbergen and A. Spence, Inverse iteration for purely imaginary eigenvalues with ap-
plication to the detection of Hopf bifurcation in large scale problems, SIAM J. Matrix Anal.
Appl., 31 (2010), pp. 1982--1999, https://doi.org/10.1137/080742890.

[26] K. Meerbergen and R. Vandebril, A reflection on the implicitly restarted Arnoldi method
for computing eigenvalues near a vertical line, Linear Algebra Appl., 436 (2012), pp. 2828--
2844.

[27] I. Moret and P. Novati, RD-rational approximations of the matrix exponential, BIT, 44
(2004), pp. 595--615.

[28] J. Niesen and W. M. Wright, Algorithm 919: A Krylov subspace algorithm for evaluating the
\varphi -functions appearing in exponential integrators, ACM Trans. Math. Software, 38 (2012),
22.

[29] R. Nong and D. C. Sorensen, A Parameter Free ADI-like Method for the Numerical So-
lution of Large Scale Lyapunov Equations, Tech. Report 09-16, Computational and Ap-
plied Mathematics Department, Rice University, Houston, TX, 2009, available online from
http://www.caam.rice.edu/\sim sorensen/Tech Reports.html.

[30] L. Reichel, Newton interpolation at Leja points, BIT, 30 (1990), pp. 332--346.

https://doi.org/10.1137/15M1027620
https://doi.org/10.1137/100813257
https://doi.org/10.1137/120897468
https://doi.org/10.1137/1.9780898719543
https://doi.org/10.1137/120862399
https://doi.org/10.1137/120862399
https://doi.org/10.1137/100817048
https://doi.org/10.1137/S0036142995280572
https://doi.org/10.1137/S0036142995280572
https://doi.org/10.1137/080742890
http://www.caam.rice.edu/~sorensen/Tech_Reports.html

A3370 MINGHAO W. ROSTAMI AND FEI XUE

[31] M. W. Rostami, New algorithms for computing the real structured pseudospectral abscissa and
the real stability radius of large and sparse matrices, SIAM J. Sci. Comput., 37 (2015),
pp. S447--S471, https://doi.org/10.1137/140975413.

[32] Y. Saad, Variations on Arnoldi's method for computing eigenelements of large unsymmetric
matrices, Linear Algebra Appl., 34 (1980), pp. 269--295.

[33] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator,
SIAM J. Numer. Anal., 29 (1992), pp. 209--228, https://doi.org/10.1137/0729014.

[34] Y. Saad, Numerical Methods for Large Eigenvalue Problems, SIAM, Philadelphia, 2011, https:
//doi.org/10.1137/1.9781611970739.

[35] B. H. Sheehan, Y. Saad, and R. B. Sidje, Computing exp(- \tau A)b with Laguerre polynomials,
Electron. Trans. Numer. Anal., 37 (2010), pp. 147--165.

[36] R. B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans.
Math. Software, 24 (1998), pp. 130--156.

[37] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM
J. Sci. Comput., 29 (2007), pp. 1268--1288, https://doi.org/10.1137/06066120X.

[38] V. Simoncini and D. B. Szyld, Theory of inexact Krylov subspace methods and applications
to scientific computing, SIAM J. Sci. Comput., 25 (2003), pp. 454--477, https://doi.org/
10.1137/S1064827502406415.

[39] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM
J. Matrix Anal. Appl., 13 (1992), pp. 357--385, https://doi.org/10.1137/0613025.

[40] G. W. Stewart, Matrix Algorithms Volume II: Eigensystems, SIAM, Philadelphia, 2001,
https://doi.org/10.1137/1.9780898718058.

[41] S. Timme, K. J. Badcock, M. Wu, and A. Spence, Lyapunov inverse iteration for
stability analysis using computational fluid dynamics, in Proceedings of the 53rd
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence, AIAA Paper 2012-1563, 2012.

[42] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, Philadelphia,
2013.

[43] L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal
Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.

[44] M. Wu, Linear Stability Analysis using Lyapunov Inverse Iteration, Ph.D. thesis, University
of Maryland, College Park, MD, 2012.

https://doi.org/10.1137/140975413
https://doi.org/10.1137/0729014
https://doi.org/10.1137/1.9781611970739
https://doi.org/10.1137/1.9781611970739
https://doi.org/10.1137/06066120X
https://doi.org/10.1137/S1064827502406415
https://doi.org/10.1137/S1064827502406415
https://doi.org/10.1137/0613025
https://doi.org/10.1137/1.9780898718058

	Introduction
	Main theorems and a motivational example
	The polynomial and single-pole rational Leja method
	Review of the polynomial Leja method
	The single-pole rational Leja method
	Parameter estimation
	Estimate the spectral bounds for polynomial Leja
	The scaling factor a and the degree L of Newton polynomials
	The substep size

	Numerical results
	Test problems
	Description of the numerical experiments
	Comparison of four methods for computing ehAv
	Comparison of eigensolver and preconditioner combinations
	Relaxing the substep size for the rational Leja method

	Applications in pseudospectral analysis
	Conclusions
	Appendix A. Computing eAv by the polynomial Leja method
	Appendix B. Review of the Lyapunov inverse iteration
	Acknowledgments
	References

